

1. 実験データからサイクル図を描く

株式会社メガケム 株式会社 NTTデータ三洋システム All rights reserved contact 嵯峨泰介(メカ゛ケム) tai@megachem.co.jp 市川 英彦(NTデータ三洋システム) ITIK014963@sanyo.co.jp

ステップ1:線図の作成

冷媒設定メニュー①をクリックし、冷媒選択パネルから R22 を選択②,③すると、線図が表示

株式会社メガケム 株式会社 NTTデータ三洋システム All rights reserved contact嵯峨泰介 (メガケム) tai@megachem.co.jp 市川 英彦 ITIK014963@sanyo.co.jp

グリッド表示の有無,線図の色,表示範囲の設定はズームメニュー⑤で行なう

ステップ2: P-h線図上にサイクル各点を表示する

物性値メニューから圧力,温度入力を選択	🛎 測定入力	×
例: 凝縮器入口冷媒 圧力 1720 kPa	- 測定位置情報 Pressure [kPa]	色 国国
温度 _ 65 ℃	Temperature [C]	
Pressure 横の 欄でマウスを左クリックし、	(OK)	キャンセル
1720 とキー入力する。 Enter キー入力は不要。		
Temperature 横の 欄でマウスを左クリックし、	65 とキー入力する。 Ent	er キー
入力は不要。		

株式会社メガケム 株式会社 NTTデータ三洋システム All rights reserved contact嵯峨泰介(メガケム)tai@megachem.co.jp 市川 英彦 ITIK014963@sanyo.co.jp

膨張弁出口,蒸発器入口では、冷媒が気液共存(2相)域にあるので、R22のような純物質 では圧力と温度から一意に状態点を決めることができないため、膨張弁入口の冷媒状態からの 等エンタルピー変化を仮定し、物性値を求める。

物性値メニューから温度、エンタルピー入力を選択

例: 蒸発器入口冷媒

圧力	760 kPa		
温度	14 °C		
膨張纟	 〒入口エンタルピー	253.19	kJ/kg

🐂 測定入力			×
□ 測定位置情報-			
Temperature	14	[0]	
Enthalpy	253.19	[kJ/kg]	
	0	K)	キャンセル

Temperature 横の 欄でマウスを左クリックし、

14 とキー入力する。 Enter キー入力は不要。

Enthalpy 横の ____ 欄でマウスを左クリックし、253.19 とキー入力する。 Enter 入力は不要。

Enter	キー
-------	----

(この表は自分で作成してください)						<u>)</u>)
	圧力 [kPa]	温度[℃]	エンタルピー	エントロピー	密度[kg/m³]	
			[kJ/kg]	[kJ/(kg.K)]		
凝縮器入口	1720	65	444. 11	1. 78	65.64	
凝縮器出口	1720	40	254. 71	1. 18	1115. 49	
膨張弁入口	1720	39	253. 19	1. 18	1121.64	
膨張弁出口	1000/999. 86 (*)	<i>23.</i> 7	253. 19	1. 18	1063. 54	2.相域
蒸発器入口	760/759. 87 ^(*)	14	253. 19	1. 19	1027. 20	
蒸発器出口	760	15	415.04	1. 75	31.59	
圧縮機入口	760	15	415.04	1. 75	31.59	
圧縮機出口	1720	73	451.45	1.80	62.88	

斜体文字は計算のための入力値(測定値)

(*) /上段は 測定値,下段は計算値

ステップ3:注記を行なう

ステップ2の作業で、サイクル各点が線図上に表示されたので、注記機能を用いてサイクル図 を完成させる。

注記メニューから、ライン描画を選択し、線種を設定する。使用する線調①を左クリックし、 表示色②を左クリックすると、設定に応じてサンプル③が表示される。 で決 ΟK 定する。

⑤終点をクリック ④始点をクリック, ⑤終点をクリック ④始点として再クリック

注記メニューから、メモ記入を選択する。

ノート欄の を左クリックし、文字列を入力する。 Enter キーは不要。 記入したいメモを入力した後、線図を左クリックするとメモ がプロットされる⑥。

🐂 ノート書き込み	×
_ロ ノート―――	
P	

株式会社 NTTデータ三洋システム All rights reserved contact 市川 英彦 ITIK014963@sanyo.co.jp

6/10

6

	乾球温度[℃]	湿球温度[℃]	密度[kg/m3]	エンタルピー
				[kJ/kg]
凝縮器入口	35	24	1. 1196	71.87
凝縮器出口	43	26	1.0914	79.96
蒸発器入口	27	19	1. 1564	53. 92
蒸発器出口	15. 5	15	1. 2025	42. 08

株式会社 NTTデータ三洋システム All rights reserved

contact 市川 英彦 ITIK014963@sanyo.co.jp

3. KITSを利用した実機データを用いたサイクル計算

冷媒物性値

	圧力 [kPa]	温度[℃]	エンタルピー	エントロピー	密度[kg/m³]
			[kJ/kg]	[kJ/(kg.K)]	
凝縮器入口	1720	65	444. 11	1. 78	65. 64
凝縮器出口	1720	40	254. 71	1. 18	1115. 49
膨張弁入口	1720	39	253. 19	1. 18	1121.64
膨張弁出口	1000/999. 86 ^(*)	<i>23.</i> 7	253. 19	1. 18	1063. 54
蒸発器入口	760/759. 87 ^(*)	14	253.19	1.19	1027. 20
蒸発器出口	760	15	415. 04	1. 75	31.59
圧縮機入口	760	15	415.04	1. 75	31. 59
圧縮機出口	1720	73	451.45	1.80	62. 88

冷媒流量 0.81[kg/min]

蒸発器風量 6.28[m³/min]

凝縮器風量 17.5[m³/min] 空気の比熱 1.007[kJ/(kg.K)]

計算方法

蒸発器能力[kW]=冷媒流量[kg/sec]×(圧縮機入口エンタルピー-蒸発器入口エンタルピー)[kJ/kg] = 0.81÷60×(415.04-253.19)

 $= 0.0135 \times 161.85$

= 2.18[kJ/sec]

= 2.18[kW] 冷媒側計算

蒸発器能力[kW]=蒸発器風量[m³/sec]×蒸発器出口空気密度[kg/m³]×

- (蒸発器入口空気エンタルピー-蒸発器出口空気エンタルピー)[kJ/kg]
- = $9.19 \div 60 \times 1.2025 \times (53.92 42.08)$
- $= 0.153 \times 1.2025 \times 11.84$
- = 2.18[kW] 空気側計算

凝縮器能力[kW]=冷媒流量[kg/sec]×(凝縮器入口エンタルピーー凝縮器出口エンタルピー)[kJ/kg] = 0.81÷60×(444.11-254.71)

= 2.56[kW] 冷媒側計算

凝縮器能力[kW]=空気の比熱[kJ/(kg.K)]×凝縮器風量[m³/sec]×凝縮器出口空気密度[kg/m³]× (凝縮器出口空気温度-凝縮器入口空気温度)[℃]

- = $1.007 \times (17.5 \div 60) \times 1.0914 \times (43-35)$
- = 2.56[kW] 空気側計算

4. KITSに組み込まれているサイクル計算機能の利用

次の3点を計算の条件としている。

- ・凝縮器出口で2相域の場合は、その旨を通知し、以降の計算はしない
- ・凝縮器出口から蒸発器入口までは、等エンタルピー変化とする
- ・凝縮器露点~出口間では圧力損失はない。(圧損は全て圧縮機出口から 凝縮器露点間におきる)

凝縮器平均温度 = $\frac{凝縮器露点温度 + 凝縮器沸点温度}{2}$ 凝縮器過冷却 = 凝縮器出口温度 - 凝縮器沸点温度 蒸発器平均温度 = $\frac{蒸発器露点温度 + 蒸発器入口温度}{2}$ 蒸発器過熱度 = 圧縮器入口温度 - 蒸発器露点温度

2種類のCOP計算式

KITS Windows MegaChem Distribution Edition 操作と利用例

株式会社メガケム 営業部 Tel0276-61-8278 Fax0276-61-8797 作成・担当 嵯峨泰介 tai@megachem.co.jp 2003.03.03 株式会社 NTTデータ三洋システム システムソリューション事業部 関東ソリューション部 Tel0276-61-8278 Fax0276-61-8797 作成・担当 市川英彦 ITIK014963@sanyo.co.jp 2003.03.03